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coupled nonlinear equations
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Received 25 August 1998

Abstract. A method is presented by which analytically solvableN -coupled nonlinear
Schr̈odinger and coupled quadratic equations are found for which the nonlinear coupling parameters
of the equations can take up wide ranges of values and cover many regions. Specific results for
N = 2 and 3 are presented. These results have potentially useful applications to problems in
nonlinear optics and the dynamics of multispecies Bose–Einstein condensates.

1. Introduction

The problem of integrability and non-integrability of nonlinearly coupled dynamical systems
withN(>1) degrees of freedom has been a subject of considerable interest for many years [1].
One of the two coupled dynamical systems we shall discuss in this paper is closely related
to the coupled nonlinear Schrödinger (CNLS) equations which have applications in many
physical problems, especially in nonlinear optics [2]. The other is an analogue of the CNLS
system except that the nonlinear coupling is quadratic instead of cubic, and we call it coupled
quadratic (CQ) equations. CQ equations may not have any direct physical applications at the
present time, but they serve to illustrate the generality and possible extension of the method
for finding analytic solutions for coupled nonlinear equations which we give in this paper. We
present analytic coupled solitary-wave solutions for the CNLS and CQ equations that show
that there are manyregionswhere the coupling parameters can change continuously over wide
ranges of values for which the coupled equations are analytically solvable. For these coupling
parameters, the equations may not be completely integrable, but are analytically solvable for
the specific initial conditions prescribed by their analytic solutions. As is well known, only
very few special values of coupling parameters satisfy the integrability requirements. One of
the objectives of this paper is to focus attention away from integrable to analytically solvable
cases because analytic solutions for the latter can be applied to many useful cases where
the coupling parameters can assume wide ranges of values. Although we are restricted to
using the initial conditions prescribed by these analytic solutions, they can often be achieved
experimentally without too much difficulty. We begin by introducing two CNLS equations
that arise in nonlinear optics.

When two optical waves of different frequencies copropagate in a medium and interact
nonlinearly through the medium, the propagation equation for the slowly varying complex
amplitudeφm(z, t) of themth electric field can be written as [2]

iφmz + iβ1mφmt − β2m

2
φmtt +

iαm
2
φm + γm(fmm|φm|2 + 2fmm′ |φm′ |2)φm = 0

m = 1, 2 m′ 6= m (1)
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whereβ1m = 1/vgm, vgm is the group velocity,β2m is the group-velocity dispersion (GVD)
coefficient,αm is the loss coefficient,γm is the nonlinear coefficient andfmm′ is the overlap
integral and where the subscripts inz andt denote derivatives with respect toz andt as opposed
to the subscriptm for different components. The medium is said to exhibit normal dispersion
if β2 > 0, anomalous dispersion ifβ2 < 0.

If the nonlinear coupling is between two polarization componentsφm(z, t), m = 1, 2, of
a wave at some central frequency, the propagation equations are [2]

iφ1z + iβ11φ1t − β2

2
φ1t t +

iα

2
φ1 + γ [(|φ1|2 + p|φ2|2)φ1 + qφ∗1φ

2
2 e−2i1βz] = 0

iφ2z + iβ12φ2t − β2

2
φ2t t +

iα

2
φ2 + γ [(|φ2|2 + p|φ1|2)φ2 + qφ∗2φ

2
1 e2i1βz] = 0 (2)

where1β = β11− β12 is the wavevector mismatch due to, for example, the birefringence of
the medium through which the wave propagates and the parametersp andq satisfyp +q = 1.

If the two coupled waves or components propagate with approximately the same group
velocityv, then iβ1mφmt terms in equations (1) and (2) can be eliminated by the transformation
t → t − z/v and equations (1) and (2) can be regarded together by considering the following
N -coupled nonlinear Schrödinger-like equations for the caseN = 2

iφmz + φmtt + κmφm +

( N∑
n=1

pmn|φn|2
)
φm +

( N∑
n=1

qmnφ
2
n

)
φ∗m = 0 m = 1, . . . , N (3)

wherep, q and κ are parameters characteristic of the medium or the following coupled
equations

iψmz +ψmtt +

( N∑
n=1

pmn|ψn|2
)
ψm +

( N∑
n=1

qmnψ
2
n e2iκnz

)
ψ∗m e−2iκmz = 0 m = 1, . . . , N

(4)

which can be transformed into (3) with substitutionsψm = φm exp(−iκmz).
We first search for the stationary-wave solution of the form

φm(z, t) = xm(t) exp(i�z) (5)

where� is a real constant andxm(t) are real functions oft only. Equation (3) reduces to the
following, which may be called associated dynamical CNLS equations

ẍm − Amxm +

( N∑
n=1

bmnx
2
n

)
xm = 0 m = 1, . . . , N (6)

whereẋ denotes dx/dt and where

Am = �− κm bmn = pmn + qmn. (7)

To eliminate the permutation symmetry, we arrange equation (6) such thatA1 6 A2 6 · · ·
6 AN . Since equations (3) and (4) are invariant under a Galilean transformation, travelling
waves can be constructed from (5) by replacingφm(z, t) by

φm(z, t − z/v) exp{i[ t − z/(2v)]/(2v)} (8)

wherev is the velocity of waves.
Comparing equation (3) with the complex conjugates of equation (1) shows that we can

identify negative (positive) values ofbjk, k = 1, . . . , N , in equation (6) with the normal
(anomalous) GVD region forφj . The special integrable caseN = 2,Aj = 0 andbjk = 1 for
j, k = 1, 2 is associated with the known integrable case of equation (1) first given by Manakov
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[3]. Various solitary-wave solutions for this case that consist of the so-called bright and dark
solitary waves, periodic (elliptic) waves and waves of other forms, have been presented [4–14].
Other values ofb for which coupled equations are integrable have been given in [15]. The
coupled equations of (6) have been of interest and studied in nonlinear dynamics for many
years and are known to be integrable for a number of specific values ofA andb [1].

Let us refer to the space spanned byN2 real values of the nonlinear coupling parameters
bjk, j, k = 1, . . . , N , as theb-space. Instead of asking whether for some particular point of
this b-space equation (6) is integrable, the key idea behind the results presented in this paper
is to ask whether it is possible to postulateN analytic solutions forx1, . . . , xN , with variable
parameters and to find points or regions in theb-space for these solutions to hold, so that for
these points or regions, equation (6) is analytically solvable. In this paper, we show that there
are manyregionsin the b-space where the values forb can change continuously over wide
ranges and for which the coupled equations are analytically solvable. We present a method and
prescription for obtaining such regions and present specifically 16 analytically solvable regions
and the corresponding coupled solitary waves for the caseN = 2 for the CNLS equations.
The solitary waves are given in terms of Jacobian elliptic functions and are thus generally of
the periodic type. The aperiodic type that corresponds to the special casek2 = 1, wherek
is the modulus of the elliptic functions, may be of greater interest. However, it will be clear
from our results that restricting the use of waves to those of the aperiodic type reduces access
to only a small part of the analytically solvableb-space.

The analytically solvable regions forN > 2 are also of interest and can be obtained from
our prescription. Possible advantages in increasing the number of interacting fields from, say,
two to three, will be pointed out. For these cases, we shall present results for aperiodic waves
for the CQ as well as CNLS equations.

We present our method and prescription in section 2. In section 3, we present sixteen
analytically solvable regions for CNLS equations forN = 2 with periodic-wave solutions.
In section 4, we discuss the special case of aperiodic waves and present a more compact
formulation for the solutions and for finding the analytically solvable regions forN -CNLS and
CQ equations. A summary is given in section 5.

2. A prescription for finding the analytically solvable regions for CNLS equations

Considering equation (6), we make the ansatz thatx1(t), . . . , xN(t) is expressible in terms of
N of the (2n+1) Laḿe functions of ordern [16], with repetition allowed (i.e. the same function
for differentx) for n = 1, . . . , N − 1 and without repetition forn = N .

Let h(n)j , j = 1, . . . ,2n + 1, arranged in descending order of magnitude, denote the

characteristic values andf (n)j (u) the corresponding characteristic function (Lamé function), of
Lamé equations of ordern, d2y/du2+{h−n(n+1)k2sn2(u, k)}y = 0. We make the ansatz that

x1(t) =
√
C1f

(n)
p (αt) x2(t) =

√
C2f

(n)
q (αt), . . . , xN(t) =

√
CNf

(n)
s (αt) (9)

is a solution of equation (6), wheren = 1, . . . , N , p, q, . . . , s = 1, . . . ,2n + 1,p 6 q 6 · · ·
6 s for n = 1, . . . , N − 1 andp < q < · · · < s for n = N . Sincex1(t), x2(t), . . . , xN(t) are
assumed real, we require thatC1, C2, . . . , CN , are real and positive. Substitutions of the ansatz
(9) into equation (6) result in algebraic equations forb,A,C, α andk2 which can be expressed
in a compact way in terms of three matricesΓ, B andD which we define in the following. First,
we express the square of thej th Lamé function of ordern in a power series ins ≡ sn(u, k) as

[f (n)j (u)]2 =
n+1∑
i=1

a
(n)
ij s

2(i−1) j = 1, . . . ,2n + 1. (10)
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We form an(n + 1) × (2n + 1) matrix a = [a(n)ij ]. DefineΓ = [cij ] to be an ((n + 1) × N )

matrix whereci1 = a(n)ip C1, ci2 = a(n)iq C2, . . . , ciN = a(n)is CN , i = 1, . . . , n + 1 and whereCj
are the amplitudes in (9).B = [bij ], i, j = 1, . . . , N is an (N × N ) matrix, wherebij are the
nonlinear coupling parameters in equation (6).D = [d(n)ij ], i = 1, . . . , n + 1, j = 1, . . . , N is

an ((n+1)×N ) matrix, whered(n)11 = A1+h(n)p α
2, d(n)12 = A2+h(n)q α

2, . . . , d
(n)
1N = AN +h(n)s α

2,

d
(n)
2j = −n(n + 1)k2α2, d(n)3j = · · · = d

(n)
n+1,j = 0, j = 1, . . . , N and whereAj are the pa-

rameters in equation (6),h(n)j the characteristic values of the Lamé equation andα the scaling
parameter in (9). The algebraic equations that need to be satisfied for (9) to be a solution of
equation (6) can now be expressed conveniently as

ΓBT = D (11)

whereBT denotes the transposed matrix ofB. ForN = 2, we can readily solve equation (11)
for n = 1, p, q = 1, 2, 3, p 6 q and forn = 2, p, q = 1, . . . ,5 andp < q, and obtain 16
analytically solvable regions inb-space or 16 sets of explicit expressions ofb in terms of the
arbitrary amplitudesC1 andC2 of the waves and in terms ofA1, A2, k2 andα2. The modulus
k of the elliptic functions that express the Lamé functions, which is in the range 0< k2 6 1
unless otherwise specified, may be considered as another variable parameter. For some of
these analytically solvable regions, the values ofA in equation (6) are constrained, but for
others, they are free to take up any values unless they are physically constrained.

3. Analytically solvable regions for two CNLS equations

Treating the amplitudesC1 andC2 for x1 andx2, the modulusk, the scaling parameterα and
in some casesA1 andA2, as variable parameters, the sixteen analytically solvable regions in
b-space for equation (6),N = 2, are given in (I)–(XVI) later together with the analytic solutions
for x1 andx2. Using transformation (8), these are thee regions ofb for which equation (3) or
(4) have analytic coupled solitary-wave solutions. We denoteG± = 1 +k2± (1− k2 + k4)1/2.

(I) x1 =
√
C1sn(αt, k) x2 =

√
C2sn(αt, k)

A1 = A2 = −(1 + k2)α2

b11/b21 = b12/b22 = 1 b11C1 + b12C2 = −2k2α2.

(II ) x1 =
√
C1cn(αt, k) x2 =

√
C2cn(αt, k)

A1 = A2 = (2k2 − 1)α2.

Forb11 > b21 b22 > b12

C1 = 2k2α2(b22− b12)1
−1 C2 = 2k2α2(b11− b21)1

−1

where1 = b11b22− b12b21.

Forb11/b21 = b12/b22 = 1 b11C1 + b12C2 = 2k2α2.

(III ) x1 =
√
C1dn(αt, k) x2 =

√
C2dn(αt, k)

A1 = A2 = (2− k2)α2.

Forb11 > b21 b22 > b12

C1 = 2α2(b22− b12)1
−1 C2 = 2α2(b11− b21)1

−1

where1 = b11b22− b12b21.

Forb11/b21 = b12/b22 = 1 b11C1 + b12C2 = 2α2.
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(IV ) x1 =
√
C1sn(αt, k) x2 =

√
C2cn(αt, k)

b11 = [A1 + (1− k2)α2]C−1
1 b12 = [A1 + (1 + k2)α2]C−1

2

b21 = [A2 + (1− 2k2)α2]C−1
1 b22 = [A2 + α2]C−1

2 .

(V) x1 =
√
C1sn(αt, k) x2 =

√
C2dn(αt, k)

b11 = k2[A1− (1− k2)α2]C−1
1 b12 = [A1 + (1 + k2)α2]C−1

2

b21 = k2[A2 − (2− k2)α2]C−1
1 b22 = [A2 + k2α2]C−1

2 .

(VI ) x1 =
√
C1cn(αt, k) x2 =

√
C2dn(αt, k)

b11 = −k2k′−2[A1− α2]C−1
1 b12 = k′−2[A1 + (1− 2k2)α2]C−1

2

b21 = −k2k′−2[A2 + (2− k2)α2]C−1
1

b22 = k′−2[A2 − k2α2]C−1
2 0< k2 < 1.

(VII ) x1 =
√
C1[ 1

3G− − k2sn2(αt, k)] x2 =
√
C2sn(αt, k)cn(αt, k)

b11 = 9G−2
− [A1 + 2G+α

2]C−1
1 b12 = 6k2G−1

− [A1 + (2G+ −G−)α2]C−1
2

b21 = 9G−2
− [A2 + (4 + k2)α2]C−1

1 b22 = 6k2G−1
− [A2 + (4 + k2 −G−)α2]C−1

2

A1 = 2α2(2G+G− − 3k2G+ − 1)/(3k2 − 2G−)
A2 = α2[2(4 + k2)G− − 3k2(4 + k2)− 2]/(3k2 − 2G−).

(VIII ) x1 =
√
C1[ 1

3G− − k2sn2(αt, k)] x2 =
√
C2sn(αt, k)dn(αt, k)

b11 = 9G−2
− [A1 + 2G+α

2]C−1
1 b12 = 6k2G−1

− [A1 + (2G+ −G−)α2]C−1
2

b21 = 9G−2
− [A2 + (1 + 4k2)α2]C−1

1 b22 = 6k2G−1
− [A2 + (1 + 4k2 −G−)α2]C−1

2

A1 = 2α2[G−(2G+ −G−)− 3G+]/(3− 2G−)
A2 = α2[2G−(1 + 4k2 −G−)− 3(1 + 4k2)]/(3− 2G−).

(IX ) x1 =
√
C1[ 1

3G− − k2sn2(αt, k)] x2 =
√
C2cn(αt, k)dn(αt, k)

b11 = −9G−1
− 1

−1{(1 + k2)A1 + 2[G+(1 + k2)− 3k2]α2}C−1
1

b12 = 6k21−1{A1 + (2G+ −G−)α2}C−1
2

b21 = −9G−1
− 1

−1{(1 + k2)A2 + (1− 4k2 + k4)α2}C−1
1

b22 = 6k21−1{A2 + (1 + k2 −G−)α2}C−1
2

where1 = 6k2 −G−(1 + k2)

A1 = 2α2{G−(2G+ −G−)− 3[G+(1 + k2)− 3k2]}/[3(1 + k2)− 2G−]

A2 = α2{2G−(1 + k2 −G−)− 3(1− 4k2 + k4)}/[3(1 + k2)− 2G−].

(X) x1 =
√
C1[ 1

3G− − k2sn2(αt, k)] x2 =
√
C2[ 1

3G+ − k2sn2(αt, k)]

b11 = −9G−1
− 1

−1(A1 +G+α
2}C−1

1 b12 = 9G−1
+ 1−1{A1 + (2G+ −G−)α2}C−1

2

b21 = −9G−1
− 1

−1{A2 + (2G− −G+)α
2}C−1

1 b22 = 9G−1
+ 1−1(A2 +G−α2}C−1

2

where1 = G+ −G−
A1 = α2(2G+G− −G2

+ −G2
−)1

−1 A2 = α2(−2G+G− +G2
+ +G2

−)1
−1.

(XI ) x1 =
√
C1sn(αt, k)cn(αt, k) x2 =

√
C2sn(αt, k)dn(αt, k)

b11 = b21 = 6α2k4k′−2C−1
1 b12 = b22 = −6α2k2k′−2C−1

2

A1 = −(4 + k2)α2 A2 = −(1 + 4k2)α2 0< k2 < 1.
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(XII ) x1 =
√
C1sn(αt, k)cn(αt, k) x2 =

√
C2cn(αt, k)dn(αt, k)

b11 = {(1 + k2)A1 + (4− k2 + k4)α2}C−1
1 b12 = {A1 + (4 + k2)α2}C−1

2

b21 = {(1 + k2)A2 + (1− 4k2 + k4)α2}C−1
1 b22 = {A2 + (1 + k2)α2}C−1

2

A1 = (5k2 − 4)α2 A2 = (5k2 − 1)α2.

(XIII ) x1 =
√
C1sn(αt, k)cn(αt, k) x2 =

√
C2[ 1

3G+ − k2sn2(αt, k)]

b11 = 6k2G−1
+ {A1 + (4 + k2 −G+)α

2}C−1
1 b12 = 9G−2

+ {A1 + (4 + k2)α2}C−1
2

b21 = 6k2G−1
+ {A2 + (2G− −G+)α

2}C−1
1 b22 = 9G−2

+ {A2 + 2G−α2}C−1
2

A1 = α2{3k2(4 + k2)− 2G+(4 + k2 −G+)}/(2G+ − 3k2)

A2 = α2{6k2G− − 2G+(2G− −G+)}/(2G+ − 3k2).

(XIV ) x1 =
√
C1sn(αt, k)dn(αt, k) x2 =

√
C2cn(αt, k)dn(αt, k)

b11 = {(1 + k2)A1 + (1− k2 + 4k4)α2}C−1
1 b12 = {A1 + (1 + 4k2)α2}C−1

2

b21 = {(1 + k2)A2 + (1− 4k2 + k4)α2}C−1
1 b22 = {A2 + (1 + k2)α2}C−1

2

A1 = (5− 4k2)α2 A2 = (5− k2)α2.

(XV ) x1 =
√
C1sn(αt, k)dn(αt, k) x2 =

√
C2[ 1

3G+ − k2sn2(αt, k)]

b11 = 6k2G−1
+ {A1 + (1 + 4k2 −G+)α

2}C−1
1 b12 = 9G−2

+ {A1 + (1 + 4k2)α2}C−1
2

b21 = 6k2G−1
+ {A2 + (2G− −G+)α

2}C−1
1 b22 = 9G−2

+ {A2 + 2G−α2}C−1
2

A1 = α2{3(1 + 4k2)− 2G+(1 + 4k2 −G+)}/(2G+ − 3)

A2 = α2{6G− − 2G+(2G− −G+)}/(2G+ − 3).

(XVI ) x1 =
√
C1cn(αt, k)dn(αt, k) x2 =

√
C2[ 1

3G+ − k2sn2(αt, k)]

b11 = −6G+k
21−1{A1 + (1 + k2 −G+)α

2}C−1
1

b12 = 91−1{(1 + k2)A1 + (1− 4k2 + k4)α2}C−1
2

b21 = −6G+k
21−1{A2 + (2G− −G+)α

2}C−1
1

b22 = 91−1{(1 + k2)A2 + [2G−(1 + k2)− 6k2]α2}C−1
2

where1 = (1 + k2)G2
+ − 6G+k

2

A1 = α2{2G+(1 + k2 −G+)− 3(1− 4k2 + k4)}/[3(1 + k2)− 2G+]

A2 = α2{2G+(2G− −G+)− 6[G−(1 + k2)− 3k2)}/[3(1 + k2)− 2G+].

These results show many analytically solvable regions for the two coupled dynamical
equation (6) and for two CNLS like equations (3) and (4). The explicit expressions (I)–(XVI)
could open up more applications in optical communications. We note that some wavepairs can
be in the ‘mixed’ GVD region; i.e. one wave in the normal while the other in the anomalous
GVD region, some wavepairs can be in the normal or anomalous GVD regions for both
waves; they are not always restricted for use in only those regions because depending on the
choice of amplitudes and modulus, the same wavepair can be made to propagate as a solitary
wavepair in optical media of different character. Prospects for experimental applications of
these shape-preserving ‘Jacobian elliptic wavetrains’ have been greatly enhanced following
a recent experimental observation [17] of the evolution of an arbitrarily shaped input optical
pulse-train to the shape-preserving Jacobian elliptic pulse-train for Maxwell–Bloch equations.

If we restrict ourselves to using only aperiodic waves that correspond tok2 = 1, then
the analytically solvable regions are reduced in number and size considerably. The possible
aperiodic solitary waves have the forms tanhαξ and sechαξ , or the well known dark and
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bright solitary waves, for waves of order one and the forms sech2 αξ − (2/3), tanhαξ sechαξ
and sech2 αξ , or the so-called red, white and blue solitary waves [18], for waves of order two.

We note that two of the three aperiodic solitary waves of order two were found previously
by Tratnik and Sipe [8] and four of the five periodic solitary waves of order two by Kostov
and Uzunov [13], for the case of CNLS equations forN = 2 andb11 = b12 = b21 = b22.
In these and previous cases, the problem had been approached with some specified values of
the parameterb, for which analytic solutions might not exist or might exist only for some
specific waves of very specific amplitudes. The role played by the entire sets of waves of order
n = 1, 2, . . . forN CNLS equations was not made apparent. On the other hand, the generality
for n, N and forb which we have been able to achieve has been realized because we have
taken the approach from the point of view that is suggested by the algebraic equation (11)
resulting from our ansatz (9) in which the values ofb are left open. The subsequent results on
the admissible coupled solitary waves have led to other interesting concepts which we mention
later. First, let us further exemplify the usefulness of this approach in the following section.

4. Aperiodic waves andN coupled quadratic equations

We have seen how the method and prescription given by equations (9)–(11) can be used to find
the analytically solvable regions for the nonlinear coupling parameters ofN CNLS equations.
Since the aperiodic waves are of particular interest and since for the casek2 = 1, (2n + 1)
Lamé functions of ordern reduce to (n + 1) Laḿe functions which are expressible in compact
forms, we shall give a more compact formulation for finding analytically solvable regions forN

CNLS equations for the special case that theN waves forx1, . . . , xN are not only aperiodic (i.e.
k2 = 1) but are also all different (we call complementary). Indeed, to get a better understanding
of whether our method can be applied to otherN coupled nonlinear equations, we introduce
an analogous set of coupled equations which we callN CQ equations given by

iφmz + φmtt + κmφm +

( N∑
n=1

pmn|φn|
)
φm +

( N∑
n=1

qmnφn

)
φ∗m = 0 m = 1, 2, . . . , N.

(12)

The corresponding associated dynamical CQ equations are

ẍm − Amxm +

( N∑
n=1

bmnxn

)
xm = 0 m = 1, 2, . . . , N (13)

where we have used the same substitutions (5) and notations (7). We assume that equation (13)
has been arranged such thatA1 6 A2 6 · · · 6 AN .

The (2n + 1) Laḿe functions of ordern become, fork2 = 1, n + 1 associated Legendre
functionsPmn (x) of ordern and degreem = 0, 1, . . . , n, wherex = tanh(u). We make the
ansatz that

xj =
√
CjP

j−1
N−1[tanh(αt)] j = 1, 2, . . . , N (14)

whereCj is real and positive, for equation (6), but that

xj = CjP 2(j−1)
2(N−1)[tanh(αt)] j = 1, 2, . . . , N (15)

whereCj is real but not necessarily positive, for equation (13). Thus we expressx1, . . . , xN ,
in terms ofN Lamé functions (fork2 = 1) of orderN − 1 for CNLS equations and in terms
of a certain subset orN of the (2N − 1) Lamé functions (fork2 = 1) of order 2(N − 1), for
CQ equations. As with equations (10) and (11), we define three matrices in the following but
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they all have the same dimension (N ×N ). We first definea(N)ij as follows. For equation (6),

a
(N)
ij is the coefficient ofx2(i−1) in [P j−1

N−1(x)]
2 when it is expanded as

[P j−1
N−1(x)]

2 =
N∑
i=1

a
(N)
ij x2(i−1) (16)

while for equation (13),a(N)ij is the coefficient ofx2(i−1) in P 2(j−1)
2(N−1)(x) when it is expressed as

P
2(j−1)
2(N−1)(x) =

N∑
i=1

a
(N)
ij x2(i−1). (17)

Our first (N × N ) matrix isΓ = [cij ] whose matrix elementscij = a(N)ij Cj , whereCj is the
coefficient in (14) for equation (6) and is the coefficient in (15) for equation (13). Our second
matrix is B = [bij ], wherebij are the nonlinear coupling parameters given in equation (6)
or (13). Our third matrix isD = [dij ], whered1j = Aj + [(N − 1)N − (j − 1)2]α2],
d2j = −(N −1)Nα2, d3j = d4j = · · · = dNj = 0 for equation (6) andd1j = Aj + [(2N − 2)
(2N − 1)− 4(j − 1)2]α2], d2j = −(2N − 2)(2N − 1)α2, d3j = d4j = · · · = dNj = 0 for
equation (13).

Substitutions of the ansatz (14) or (15) into equations (6) or (13) lead toN2 algebraic
equations which can be expressed conveniently in terms of the three matrices,Γ, B andD
defined as

ΓBT = D

or

BT = Γ−1D (18)

whereBT denotes the transposed matrix ofB. Provided thatΓ−1 exists, equation (18) gives
the set of parametersbij in equations (6) or (13) in terms ofAj given in those equations and in
terms of the generally arbitrary amplitudesCj in (14) or (15), i.e. equation (13) gives theN2

nonlinear coupling parametersbij in terms of 2N variable parametersAj , Cj , j = 1, . . . , N
and the scaling parameterα and for thesebij , equations (6) or (13) are analytically solvable.

If we are given a specific set ofN2 values ofbij and asked whether 2N Aj andCj (Cj
must be>0 for equation (6)) andα can be found that yield solutions (14) and (15), the answer
would be not generally unless the given values ofbij fall into one of the analytically solvable
regions, or in other words, unless 2N + 1 values ofAj , Cj andα can be found such that they
satisfy theN2 equations, or, unless these given values ofbij can be shown to be an integrable
set in another way.

For the special casebij = ε, for all i, j = 1, . . . , N , whereε = +1 or−1, the answer is
affirmative and we can given the solution in a compact form. We write equation (18), in this
case, as

a EC = Ed (19)

where the (N × N ) matrix a = [a(N)ij ], the N -dimensional column vectorEC = col

(C1, C2, . . . , CN) and theN -dimensional column vectorEd = col(d11, d21, . . . , dN1). The con-
sistency requirement becomes (N−1) equations onA2, . . . , AN which must be related toA1 by

Aj = A1 + (j − 1)2α2 j = 2, . . . , N (20a)

for equation (6); and

Aj = A1 + 4(j − 1)2α2 j = 2, . . . , N (20b)

for equation (13).
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Thus, ifa−1 exists, and ifA in equations (6) or (13) are given by equations (20a) or (20b),
then (14) and (15) are solutions of (6) and (13), respectively, withCj given by

EC = a−1 Ed. (21)

For equation (6), there is a further restriction thatCj give by equation (21) must be positive.
Equations (14)–(21) complete the description of our solutions for equations (6) and (13),

for the special casek2 = 1 and the coupled waves being complementary. With the use of
transformation (5) and (8), we obtain ourN complementary aperiodic solitary-wave solutions
forN CNLS and CQ equations (3) and (12). It will be noted that theN aperiodic complementary
solitary waves for CNLS equations consist of symmetric (aboutξ = 0) as well as antisymmetric
waves, while those for CQ equations consist of only symmetric waves.

There are other aperiodic-wave solutions. ForN CNLS equations, two or more waves
may be of the same waveform and they may be waves of order 1, 2, . . . , N−1 and an additional
solution which consists ofN complementary waves of orderN . ForN CQ equations, two
or more waves may be of the same waveform and they may be a subset of waves of order
2, 4, . . . ,2(N−1) and an additional solution which consists ofN complementary waves which
are a subset of waves of order 2N . These solutions can be obtained by using a formulation
similar to the one leading to equations (9)–(11).

We shall illustrate our results given by equations (14)–(21) first with the examples of
N = 2 and 3 for equation (6). Using equation (18), we find that equation (6) is analytically
solvable forN = 2 if b are given by

b11 = A1C
−1
1 b12 = (A1 + 2α2)C−1

2 b21 = (A2 − α2)C−1
1

b22 = (A2 + α2)C−1
2 (22a)

and the solution is

x1 =
√
C1 tanhαt x2 =

√
C2 sechαt. (22b)

The analytically solvable region (22a) is a small part of the analytically solvable regions given
in section 3 and can be obtained by settingk2 = 1 in (IV) and (V). ForN = 3, equation (6) is
analytically solvable ifb are given by

b11 = 9
4A1C

−1
1 b12 = 3(A1 + 2α2)C−1

2 b13 = 3
4(A1 + 8α2)C−1

2

b21 = 9
4(A2 − α2)C−1

1 b22 = 3(A2 + α2)C−1
2 b23 = 3

4(A2 + 7α2)C−1
2

b31 = 9
4(A3− 4α2)C−1

1 b32 = 3(A3− 2α2)C−1
2 b33 = 3

4(A3 + 4α2)C−1
2 (23a)

and the solution is

x1 =
√
C1(sech2 αt − 2

3) x2 =
√
C2 tanhαt sechαt x3 =

√
C3 sech2 αt. (23b)

For the casebij = ε = +1 or−1, for all i, j = 1, . . . , N , equation (22) for equation (6),
N = 2, gives

C1 = εA1 C2 = ε(2A2 − A1) α2 = A2 − A1 A2 > A1 > 0 (ε = +1)

A2 > A1 < 0 (ε = −1) (24)

and forN = 3, equation (23) gives

C1 = 9εA1/4 C2 = 3ε(2A2 − A1) C3 = 3ε(8A2 − 7A1)/4 α2 = A2 − A1

A3 = 4A2 − 3A1 A2 > A1 > 0 (ε = +1) A2 > A1 > 8A2/7< 0 (ε = −1).

(25)
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Next, we illustrate our results given by equations (14)–(21) with the examples ofN = 2
and 3 for the CQ equations, equation (12). Equations (13) are analytically solvable forN = 2
with solutions given by equation (15) ifb are given by

b11 = − 3
2A1C

−1
1 b12 = 3

2(A1 + 4α2)C−1
2 b21 = − 3

2(A2 − 4α2)C−1
1

b22 = 3
2A2C

−1
2 (26a)

and the solution is given by

x1 = C1(sech2 αt − 2
3) x2 = C2 sech2 αt. (26b)

Equation (13) is analytically solvable forN = 3 with solutions given by equation (15) ifb are
given by

b11 = 35
8 A1C

−1
1 b12 = − 35

6 (A1 + 4α2)C−1
2 b13 = 35

24(A1 + 16α2)C−1
2

b21 = 35
8 (A2 − 4α2)C−1

1 b22 = − 35
6 A2C

−1
2 b23 = 35

24(A2 + 12α2)C−1
2

b31 = 35
8 (A3− 16α2)C−1

1 b32 = − 35
6 (A3− 12α2)C−1

2 b33 = 35
24A3C

−1
2 (27a)

and the solution is given by

x1 = C1(sech4 αt − 8
7 sech2 αt + 8

35) x2 = C2 sech2 αt(sech2 αt − 6
7)

x3 = C3 sech4 αt. (27b)

For the casebij = ε for all i, j = 1, . . . , N , equation (26) gives for equation (13),N = 2,

C1 = −3εA1/2 C2 = 3εA2/2 α2 = (A2 − A1)/4 (28)

and equation (27) gives for equation (13),N = 3

C1 = 35εA1/8 C2 = −35εA2/6 C3 = 35εA3/24 α2 = (A2 − A1)/4

A3 = 4A2 − 3A1 A2 > A1 > 0 (for ε = +1) A2 > A1 < 0 (for ε = −1). (29)

5. Summary

Starting from the ansatz that analytic solutions forN waves ofN CNLS equations can be
expressed in terms ofN of the (2n + 1) Laḿe functions of ordern, n = 1, . . . , N , of variable
amplitudes and modulus, we have found many regions where the nonlinear coupling parameters
can assume wide ranges of values for which these solutions are valid and for which theN

coupled equations are thus analytically solvable. If we restrict ourselves to only aperiodic
waves, the analytically solvable regions are fewer and smaller. Applications to CQ equations
indicate that there may be other coupled nonlinear equations that can be studied in a similar
way. We also introduce the concept of classifying sets of solitary waves by their ‘order’. For
the important case of two CNLS (N = 2) equations, for example, the two coupled waves can
be chosen from three waves of order one (which reduce to two aperiodic waves, the familiar
dark and bright solitary waves) and five waves of order two (which reduce to three aperiodic
waves, referred to as red, white and blue solitary waves in [18]). A wave of orderN cannot,
in general, be a solution of CNLS equations involvingN − 2 or less coupled fields (or field
components). Thus, in particular, any wave of order>2 is not by itself a solitary wave of
an NLS equation, i.e. any wave of order>2 must be coupled or accompanied by at least
one of its partners of the same order to be solitary waves in coupled NLS equations. This
leads to an interesting and potentially useful idea that increasing the number of interacting
fields may sometimes facilitate the coupled solitary-wave propagation because of an increased
number of choices for the wave-type and amplitudes. The many advantages of using two waves
instead of one in a different context were known in other physical problems [19–21]. Besides
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applications in nonlinear optics, our results may find applications in the study of the dynamics
of Bose–Einstein condensates [22] which have attracted considerable interest recently. It is
also interesting to note a recent experimental observation of multihump solitons in a dispersive
nonlinear medium [23] and the appearance of two of the three waveforms of order two in the
theory of incoherent dark solitons [24].
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