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Analytically solvable regions for coupling parameters of
coupled nonlinear equations
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Abstract. A method is presented by which analytically solvabdé-coupled nonlinear
Schiddinger and coupled quadratic equations are found for which the nonlinear coupling parameters
of the equations can take up wide ranges of values and cover many regions. Specific results for
N = 2 and 3 are presented. These results have potentially useful applications to problems in
nonlinear optics and the dynamics of multispecies Bose—Einstein condensates.

1. Introduction

The problem of integrability and non-integrability of nonlinearly coupled dynamical systems
with N (>1) degrees of freedom has been a subject of considerable interest for many years [1].
One of the two coupled dynamical systems we shall discuss in this paper is closely related
to the coupled nonlinear Safginger (CNLS) equations which have applications in many
physical problems, especially in nonlinear optics [2]. The other is an analogue of the CNLS
system except that the nonlinear coupling is quadratic instead of cubic, and we call it coupled
quadratic (CQ) equations. CQ equations may not have any direct physical applications at the
present time, but they serve to illustrate the generality and possible extension of the method
for finding analytic solutions for coupled nonlinear equations which we give in this paper. We
present analytic coupled solitary-wave solutions for the CNLS and CQ equations that show
that there are mamggionswhere the coupling parameters can change continuously over wide
ranges of values for which the coupled equations are analytically solvable. For these coupling
parameters, the equations may not be completely integrable, but are analytically solvable for
the specific initial conditions prescribed by their analytic solutions. As is well known, only
very few special values of coupling parameters satisfy the integrability requirements. One of
the objectives of this paper is to focus attention away from integrable to analytically solvable
cases because analytic solutions for the latter can be applied to many useful cases where
the coupling parameters can assume wide ranges of values. Although we are restricted to
using the initial conditions prescribed by these analytic solutions, they can often be achieved
experimentally without too much difficulty. We begin by introducing two CNLS equations
that arise in nonlinear optics.

When two optical waves of different frequencies copropagate in a medium and interact
nonlinearly through the medium, the propagation equation for the slowly varying complex
amplitudeg,, (z, r) of themth electric field can be written as [2]

. . n ia,,
|¢mz + |,31m¢mt - %(pmtt + T‘Pm + Vm(fmm|¢m|2 + 2fmm’|¢m/|2)¢m =0
m=12 m #m Q)
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where By, = 1/vem, vem is the group velocitys,,, is the group-velocity dispersion (GVD)
coefficient,«,, is the loss coefficienty,, is the nonlinear coefficient anfl,, is the overlap
integral and where the subscriptgiands denote derivatives with respectdandr as opposed
to the subscrip#: for different components. The medium is said to exhibit normal dispersion
if B, > 0, anomalous dispersionf < O.

If the nonlinear coupling is between two polarization componepts, 1), m = 1, 2, of
a wave at some central frequency, the propagation equations are [2]

i1, + iBrdy — %Cbm + '%qsl +y (911> + plg2lP)pr + gdips e 24 =0

io, + iProda — %qsz,, + %052 +y (212 + plpr|D g2 + gp3¢7 €471 = 0 (2

whereAB = B11 — B12 is the wavevector mismatch due to, for example, the birefringence of
the medium through which the wave propagates and the paramededs; satisfyp +¢g = 1.

If the two coupled waves or components propagate with approximately the same group
velocity v, then 8y, ¢,,, terms in equations (1) and (2) can be eliminated by the transformation
t — t — z/v and equations (1) and (2) can be regarded together by considering the following
N-coupled nonlinear Schdinger-like equations for the cage= 2

N N
iz + Gt + K + (men|¢n|2)¢m + (qund),?)ab,’; =0 m=1...N @3
n=1 n=1

where p, ¢ and k are parameters characteristic of the medium or the following coupled
equations

N N

Wiz + Yo + <Z p,,mwmz) Y + (qunwf é'“l)xﬂ;; e?n =0 m=1..,N
n=1 n=1

4)

which can be transformed into (3) with substitutiofhs = ¢,, eXp(—ix;,z).
We first search for the stationary-wave solution of the form

O (2, 1) = X (1) XPIQ22) ®)

where( is a real constant ang, (¢) are real functions of only. Equation (3) reduces to the
following, which may be called associated dynamical CNLS equations

N
Xm — Apxy + (menxf)xm =0 m=1...,N (6)
n=1

wherex denotes d/dr and where
Am =Q - Km bmn = Pmn +an' (7)
To eliminate the permutation symmetry, we arrange equation (6) suctithdatA, < ---

< Ay. Since equations (3) and (4) are invariant under a Galilean transformation, travelling
waves can be constructed from (5) by replacingz, t) by

Om(z, t — Z/U) eXp{i[t - Z/(ZU)]/(ZU)} (8)

whereuv is the velocity of waves.

Comparing equation (3) with the complex conjugates of equation (1) shows that we can
identify negative (positive) values @f;, k = 1,..., N, in equation (6) with the normal
(anomalous) GVD region fap;. The special integrable cad¢e= 2, A; = 0 andb;; = 1 for
j, k =1, 2 is associated with the known integrable case of equation (1) first given by Manakov



Analytically solvable regions of coupled nonlinear equations 2417

[3]. Various solitary-wave solutions for this case that consist of the so-called bright and dark
solitary waves, periodic (elliptic) waves and waves of other forms, have been presented [4-14].
Other values ob for which coupled equations are integrable have been given in [15]. The
coupled equations of (6) have been of interest and studied in nonlinear dynamics for many
years and are known to be integrable for a number of specific valuésntib [1].

Let us refer to the space spanned¥¥real values of the nonlinear coupling parameters
bjr, j,k=1,..., N, as theb-space. Instead of asking whether for some particular point of
this b-space equation (6) is integrable, the key idea behind the results presented in this paper
is to ask whether it is possible to postul&feanalytic solutions for;, . .., xy, with variable
parameters and to find points or regions in bhgpace for these solutions to hold, so that for
these points or regions, equation (6) is analytically solvable. In this paper, we show that there
are manyregionsin the b-space where the values fbrcan change continuously over wide
ranges and for which the coupled equations are analytically solvable. We present a method and
prescription for obtaining such regions and present specifically 16 analytically solvable regions
and the corresponding coupled solitary waves for the ¢ase 2 for the CNLS equations.
The solitary waves are given in terms of Jacobian elliptic functions and are thus generally of
the periodic type. The aperiodic type that corresponds to the speciaktasel, wherek
is the modulus of the elliptic functions, may be of greater interest. However, it will be clear
from our results that restricting the use of waves to those of the aperiodic type reduces access
to only a small part of the analytically solvaldlespace.

The analytically solvable regions fof > 2 are also of interest and can be obtained from
our prescription. Possible advantages in increasing the number of interacting fields from, say,
two to three, will be pointed out. For these cases, we shall present results for aperiodic waves
for the CQ as well as CNLS equations.

We present our method and prescription in section 2. In section 3, we present sixteen
analytically solvable regions for CNLS equations fér= 2 with periodic-wave solutions.
In section 4, we discuss the special case of aperiodic waves and present a more compact
formulation for the solutions and for finding the analytically solvable region&f@NLS and
CQ equations. A summary is given in section 5.

2. A prescription for finding the analytically solvable regions for CNLS equations

Considering equation (6), we make the ansatzth@, ..., xy(z) is expressible in terms of
N of the (22 +1) Lane functions of order [16], with repetition allowed (i.e. the same function
for differentx) forn = 1,..., N — 1 and without repetition for = N.

Let hﬁ.”),j = 1,...,2n + 1, arranged in descending order of magnitude, denote the

characteristic values alqu‘”) (u) the corresponding characteristic function (L&afanction), of
Lameé equations of order, d®y /du?+{h —n(n+1)k?sr?(u, k)}y = 0. We make the ansatz that

x(t) = VCifP@n)  xa(t) = VCofPlan), ... xy(0) = Oy £ (an) €)

is a solution of equation (6), where=1,...,N,p,q,...,s=1,...,2n+1,p < q <
<sforn=1,...,N—1landp <qg <--- <sforn=N. Sincexy(¢), x2(¢), ..., xy(t) are
assumed real, we require thi@t, Co, ..., Cy, are real and positive. Substitutions of the ansatz
(9) into equation (6) result in algebraic equationsifoA, C, « andk? which can be expressed
in a compact way in terms of three matri@&s andD which we define in the following. First,
we express the square of thlh Lame function of order in a power series in = sn(u, k) as

Lf" ) = Za(’” 2= j=1...2n+1 (10)
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We form an(n + 1) x (2n + 1) matrixa = [a/;’]. DefineT = [¢;;] to be an (n + 1) x N)
matrix wherec;y = a1, ciz = af;”cz, ey =a"Cy,i=1,...,n+1and where;
are the amplitudes in (9B = [b;;], i, j =1,..., Nisan (N x N) matrix, whereb;; are the
nonlinear coupling parameters in equation @)= [dfj’.’)], i=1...,n+1,j=1...,Nis
an (n+1) x N) matrix, wherei{y = Ay +h®a?, djy = Ap+hMa?, ... d{y = Ay+h"o?,
dy) = —n(n + Dk%? df) = --- =d\}} ; =0,j = 1,..., N and whereA; are the pa-
rameters in equation (6)},5.") the characteristic values of the Lamaquation and the scaling
parameter in (9). The algebraic equations that need to be satisfied for (9) to be a solution of
equation (6) can now be expressed conveniently as

I'B' =D (11)

whereBT denotes the transposed matrixgofFor N = 2, we can readily solve equation (11)
forn=1,p,q =123, p<qgandforn=2,p,q =1,...,5andp < ¢, and obtain 16
analytically solvable regions ibrspace or 16 sets of explicit expression® dfi terms of the
arbitrary amplitude€’; andC, of the waves and in terms df;, A,, k2 anda?. The modulus

k of the elliptic functions that express the Larfunctions, which is in the range 9 k% < 1

unless otherwise specified, may be considered as another variable parameter. For some of
these analytically solvable regions, the valuesAoh equation (6) are constrained, but for
others, they are free to take up any values unless they are physically constrained.

3. Analytically solvable regions for two CNLS equations

Treating the amplitude€; andC, for x; andx,, the modulug, the scaling parameterand

in some cased; and A,, as variable parameters, the sixteen analytically solvable regions in
b-space for equation (6N = 2, are givenin (I)—(XVI) later together with the analytic solutions
for x; andx,. Using transformation (8), these are thee regions for which equation (3) or

(4) have analytic coupled solitary-wave solutions. We deghte= 1 +k? + (1 — k? + k*)1/2,

) x1 = +/Ci1SNat, k) x2 = +/Casn(at, k)
A1 = Ap = — (1L +k%)a?
b11/by1 = b1a/bp =1 b11C1 + b1oCy = — 2k

() x1=/Cienat, k) x2 = /Caocn(at, k)
A1 = Ay = (2k% — Da?.
Forbi, > boy by > b1o
C1 = 2k%0®(bo — bip) A™* Co = 2k%a®(b11 — bo A~
whereA = bllbzz — b12b21.
Forby1/ba1 = bia/bpo = 1 b11C1 + b1pCo = 2k%a?.

(M) x1 = /C1rdn(at, k) x2 = /Codn(at, k)
A1 = Ap = (2 - kD).
Forbi1 > by by > bio
C1 = 20%(bap — b1) At Co = 20%(b11 — b)) At
whereA = b11boy — b1obo1.
Forbi1/bz1 = b12/b2o =1 b11C1 + b12Co = 202,
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V) x1 = +/C1SN(at, k) X2 = +/Cocn(at, k)
bu=[A1+A—k)o?IC;t b= [A1+ (1 +kP)a?]C5"
by = [Az + (1 — 2k%)e?]Cyt by = [A2 +a?]C

V)  x1=+/Cisnat, k) x2 = /Cadn(at, k)
b1y = K’[A; — (L= k®a?)Ct b1a = [A1+ (1 +kHa?]C;t
bo = k[A; — 2 - kH)e?]Ct by = [Az + k?a?]C, L.

(V1)  x1=+/Cicn(at, k) x2 = /Codn(at, k)
b1 = —k*'?[A1 — @?C]t b1 = K ?[A1+ (1 — 2kH)a?]C,t
by = —k2k' " [A + (2 — KP)a?]Ct
by = k' *[Ay — kK?a?]C,t 0<k®<1

VI x1=/Ci[EG_ — kst (at, k)] x2 = /Casnat, k)en(at, k)
b1 = 9G~%[A; + 2G,a®]C* b2 = 6k*°G~[A1 + (2G+ — G_)a?]C,t
bor=9G *[Az + (A+k)a?ICTt by =6k°G Az + (4 +k* — G_)|Cy*
Ay = 20%(2G+G_ — 3k*G+ — 1)/(3k* — 2G_)
Ay = @?[2(4 +k%)G_ — 3k?(4 +k?) — 2]/ (38k? — 2G_).

VI x1=/Ci[EG- — kst (at, k)] x2 = /Caosn(at, k)dn(at, k)
b11 = 9G~[A1 + 2G.@?]C* b12 = 6k*°G~Y[A1 + (2G+ — G_)a?]C,*
by = 9G A+ (L + 4%)a?|C7Y by = 6k2G A+ (L + 4&® — G )a?]Ct
A1 =20°[G_(2G+ — G_) — 3G4+]/(3—2G)
A, =?[2G_(1+ 4> —G_) —3(1+4>]/(3—2G.).

(IX)  x1=+/Cil3G_ — KPsrf(at, k)] x2 = /Caen(at, k) dn(at, k)
b11 = —9G TATHL +k%) AL+ 2[G (L +k?) — 3k} Ct
b12 = 6k*°A™HAL + (2G. — G )2} C,t
by = —9G I ATHL +k?) Ay + (1 — 4% + ket
by = Bk A AL+ (L+k% — G )a?}Cyt
whereA = 6k? — G_(1 +k?)
A1 =20%{G_(2G+ — G_) — 3[G+(1 +k?) — 3k]}/[3(L +k?) — 2G_]
Ar = ?(2G_(1+k* — G_) — 3(1 — 4k% + kH}/[3(1 +k?) — 2G_].

X)  x1=CilEG- — kPsr(at, k)] x2 = /Cal 3G — KPsri(at, k)]
bi1 = —9G*AY AL+ Goa®}CT b= 9GPATHAL+ (2G4 — G Cyt
by = —9GTATHAL+ (2G_ — G)a?)CTY by =9G AT A+ G_a?)Ct
whereA = G, — G_
A1 = a?(2G+G_ — G?> - G*)A? Ar = a?(=2G+G_ + G2+ G?)A™L.
XI)  x1=+/Cisn(at, k)en(at, k) xp = /Casn(at, k)dn(at, k)
b11 = by = 6’k k' 2C b12 = byp = —602k?k'72C, "
AL = —(4 +k%)a? Ar = —(1 + 4>)a? 0<k®<1.
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(XI)  x1 = /Cisn(at, k)en(at, k) xp = /Coen(at, kydn(at, k)
b ={(1+k) A1+ (@G- K +kHa®)Crt by ={A1+ (4 +k)a?)Cyt
b ={(L+k) Az + (L — 4> +kHa®)CTh by = {Az + (L +k9)a?)Cy
Ay = (5k% — 4a? Ay = (5k% — Da®.

XN  x1 = /Cisn(at, k)en(at, k) X2 = /Co[3G. — kst (at, k)]
b1y = 6k°G;HAL+ (4 +k? — G)a?)Ct b12 = 9G;2{A1 + (4 +k%)a?)C,t
by = Bk°GHAL + (2G_ — Gya?)Ct by = 9G%{Ay +2G_a?)C,t
Ay = ?(3k2(4 +k?) — 2G+(4 +k? — G1)}/(2G+ — 3k?)
Ay = a?(6k2G_ — 2G+(2G_ — G4+)}/(2G+ — 3k?).

XIV) x1= Jasmat, kydn(at, k) Xp = @cn(at, kydn(at, k)
b= {(L+k) A1+ (L= K2+ HNa?}Crt bia={A1+ (L +4P)a?)Cyt
by ={(L+k?)Az+ (1 — 4> +kNa®)Crt b= {A2+ (L +k%)?)Cy !
A1 = (5— 4k%)a? Ar = (5— k%2

(XV)  x1 = +/Cisnat, k)dn(at, k) X2 = /Co[ 3G — kst (at, k)]
b1 = 6k°GHAL+ (L + 42 — G )a®)Crt bip = 9G %A1+ (L + 4P)a?)Cy
by = 6k2G;HAL + (2G_ — Ga?)Ct by = 9G;{Ay + 2G_a?)C,t
Ar = d?(B(1 + 4% — 2G+(1 + 4> — G4)}/(2G+ — 3)
Ay = a?{6G_ — 2G+(2G_ — G+)}/(2G+ — 3).

(XVI) x; = /Cien(at, kydn(at, k) X2 = /Co[ 3G — kst (at, k)]
b1y = —6Gk2ATYH A + (1 +k% — Goa?ct
bia = OATH(L +k? Ay + (1 — k% + kHa?)Cy
by = —6Gk2A7HAy+ (2G_ — G4)a?)Ct
by = OATH(L +k?) Ay + [2G_ (1 +k?) — 6k%]a?)C,
whereA = (1 +k%)G? — 6G.k?
Ay = a?(2G+(L+k? — Gy) — 3(1 — 4k% + k™) /[B(1 +k?) — 2G4]
Az = @?(2G+(2G_ — G4+) — B[G_(1 +k?) — 3k} /[3(1 +k?) — 2G.].

These results show many analytically solvable regions for the two coupled dynamical
equation (6) and for two CNLS like equations (3) and (4). The explicit expressions (1)—(XVI)
could open up more applications in optical communications. We note that some wavepairs can
be in the ‘mixed’ GVD region; i.e. one wave in the normal while the other in the anomalous
GVD region, some wavepairs can be in the normal or anomalous GVD regions for both
waves; they are not always restricted for use in only those regions because depending on the
choice of amplitudes and modulus, the same wavepair can be made to propagate as a solitary
wavepair in optical media of different character. Prospects for experimental applications of
these shape-preserving ‘Jacobian elliptic wavetrains’ have been greatly enhanced following
a recent experimental observation [17] of the evolution of an arbitrarily shaped input optical
pulse-train to the shape-preserving Jacobian elliptic pulse-train for Maxwell-Bloch equations.

If we restrict ourselves to using only aperiodic waves that correspoid te 1, then
the analytically solvable regions are reduced in number and size considerably. The possible
aperiodic solitary waves have the forms tarh and seclxé&, or the well known dark and
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bright solitary waves, for waves of order one and the forms%segh- (2/3), tanhaé sechxé
and secha, or the so-called red, white and blue solitary waves [18], for waves of order two.
We note that two of the three aperiodic solitary waves of order two were found previously
by Tratnik and Sipe [8] and four of the five periodic solitary waves of order two by Kostov
and Uzunov [13], for the case of CNLS equations for= 2 andby1 = b1o = by1 = bo).
In these and previous cases, the problem had been approached with some specified values of
the parameteb, for which analytic solutions might not exist or might exist only for some
specific waves of very specific amplitudes. The role played by the entire sets of waves of order
n=1,2,...for N CNLS equations was not made apparent. On the other hand, the generality
for n, N and forb which we have been able to achieve has been realized because we have
taken the approach from the point of view that is suggested by the algebraic equation (11)
resulting from our ansatz (9) in which the valuegafre left open. The subsequent results on
the admissible coupled solitary waves have led to other interesting concepts which we mention
later. First, let us further exemplify the usefulness of this approach in the following section.

4. Aperiodic waves andN coupled quadratic equations

We have seen how the method and prescription given by equations (9)—(11) can be used to find
the analytically solvable regions for the nonlinear coupling parametévs@LS equations.

Since the aperiodic waves are of particular interest and since for thektasel, (21 + 1)

Lamé functions of order reduce to 4 + 1) Lamé functions which are expressible in compact
forms, we shall give a more compact formulation for finding analytically solvable regions for
CNLS equations for the special case thattheaves forxy, . . ., xy are notonly aperiodic (i.e.

k? = 1) butare also all different (we call complementary). Indeed, to get a better understanding
of whether our method can be applied to othecoupled nonlinear equations, we introduce

an analogous set of coupled equations which weXdliQ equations given by

N N
i¢mz +¢mtt +Km¢m + (Z pmn|¢n|>¢m + (Zand)n)(l’; =0 m = 1’ 2a ceey N.
n=1 n=1

(12)
The corresponding associated dynamical CQ equations are
N
Xm — Apxp, + <me,1x,,)xm =0 m=12,...,N (13)
n=1

where we have used the same substitutions (5) and notations (7). We assume that equation (13)
has been arranged such tiat < A, < --- < Ay.

The (2 + 1) Lane functions of orden become, fok? = 1, n + 1 associated Legendre
functions P)" (x) of ordern and degreen = 0, 1, ..., n, wherex = tanh(u). We make the
ansatz that

x; = /C; P} [tanh(ar)] j=12....N (14)
whereC; is real and positive, for equation (6), but that
xj = C; Py 7 [tanh(en)] j=12....N (15)

whereC; is real but not necessarily positive, for equation (13). Thus we expiess. , xy,

in terms of N Lamé functions (fork? = 1) of orderN — 1 for CNLS equations and in terms

of a certain subset av of the (2v — 1) Lamé functions (fork? = 1) of order ZN — 1), for

CQ equations. As with equations (10) and (11), we define three matrices in the following but
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they all have the same dimensiah N). We first definez{;"’ as follows. For equation (6),
a;)" is the coefficient ok2i~% in [ P§}(x)]? when it is expanded as

[P] (x)]Z Z a(N) 2(i— (16)
while for equation (13)q,"" is the coefficient 0k2~% in P57 (x) when it is expressed as
22((1\/] 1)( ) — ZG(N) 2(1 (17)

Our first (V x N) matrix isT = [c;;] whose matrix elements; = a;;'C;, whereC; is the
coefficient in (14) for equation (6) and is the coefficient in (15) for equation (13). Our second
matrix isB = [b;;], whereb;; are the nonlinear coupling parameters given in equation (6)
or (13). Our third matrix isD = [d;;], wheredy; = A; + [(N — DN — (j — 1)?]e?],
drj = —(N —1)Na?,d3j = dy; = --- = dy; = O forequation (6) and;; = A; +[(2N — 2)
(2N — 1) — 4(j — D?a?], doj = —(2N — 2)(2N — D)o?, d3; = daj = --- = dy, = 0 for
equation (13).

Substitutions of the ansatz (14) or (15) into equations (6) or (13) leadtalgebraic
equations which can be expressed conveniently in terms of the three maktja&@sndD
defined as

B’ =D
or
B'=T"1D (18)

whereBT denotes the transposed matrixf Provided thal® ! exists, equation (18) gives
the set of parametets; in equations (6) or (13) in terms df; given in those equations and in
terms of the generally arbitrary amplitud€s in (14) or (15), i.e. equation (13) gives the&
nonlinear coupling parametebs in terms of 2V variable parametera;, C;, j =1,..., N
and the scaling parameterand for these;;, equations (6) or (13) are analytically solvable.

If we are given a specific set &2 values ofb;; and asked whether®2A; andC; (C;
must be>0 for equation (6)) and can be found that yield solutions (14) and (15), the answer
would be not generally unless the given valueg;pfall into one of the analytically solvable
regions, or in other words, unles®2+ 1 values of4 ;, C; anda can be found such that they
satisfy theN? equations, or, unless these given valuek; ptan be shown to be an integrable
set in another way.

For the special cade; = ¢, foralli, j = 1,..., N, wheres = +1 or —1, the answer is
affirmative and we can given the solution in a compact form. We write equation (18), in this
case, as

aC =d 19)
where the ¥V x N) matrix a = [af}v)], the N-dimensional column vectof = col
(Cyq, Co, ..., Cy)andtheN-dimensional column vectat = col(dy1, do1, . .., dy1). The con-
sistency requirement becomes{ 1) equations oo, . .., Ay which must be related té; by

Aj = Ap+(j — 1)2a? j=2...,N (20a)
for equation (6); and

Aj = A+ 4(j — D2 j=2...,N (20b)

for equation (13).
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Thus, ifa~* exists, and ifA in equations (6) or (13) are given by equations«or (20b),
then (14) and (15) are solutions of (6) and (13), respectively, @jtgiven by

C=al. (21)

For equation (6), there is a further restriction thiatgive by equation (21) must be positive.

Equations (14)—(21) complete the description of our solutions for equations (6) and (13),
for the special cask? = 1 and the coupled waves being complementary. With the use of
transformation (5) and (8), we obtain aMrcomplementary aperiodic solitary-wave solutions
for N CNLS and CQ equations (3) and (12). Itwill be noted thattteperiodic complementary
solitary waves for CNLS equations consist of symmetric (abaeut0) as well as antisymmetric
waves, while those for CQ equations consist of only symmetric waves.

There are other aperiodic-wave solutions. BOICNLS equations, two or more waves
may be of the same waveform and they may be waves of order 1,,2V — 1 and an additional
solution which consists oN complementary waves of ordaf. For N CQ equations, two
or more waves may be of the same waveform and they may be a subset of waves of order
2,4, ...,2(N—-1)andan additional solution which consists\oEomplementary waves which
are a subset of waves of ordeN2 These solutions can be obtained by using a formulation
similar to the one leading to equations (9)—(11).

We shall illustrate our results given by equations (14)—(21) first with the examples of
N = 2 and 3 for equation (6). Using equation (18), we find that equation (6) is analytically
solvable forN = 2 if b are given by

b1 = A1CT* b1p = (A1 +209)Cy " by = (A2 — a®)Cy?
by = (A2 +a?)C;t (222)
and the solution is

x1 = +/Citanhar xp = +/Cosechut. (22b)

The analytically solvable region (22is a small part of the analytically solvable regions given
in section 3 and can be obtained by setttfg= 1 in (IV) and (V). ForN = 3, equation (6) is
analytically solvable i are given by

bu=3A1C7" b =3(A1+20)C;t biz= $(A1+87)Cyt
b= 3(A2—a®)Cit bp=3(A2+a)C;t b= F(Az+ TGyt
ba1 = 2(Az — 4a®)C;? b3z = 3(A3 — 20%)C;* bsz= 3(Az+4a®)C; (23a)
and the solution is
x1=+/Cy(secar — %) x2 = +/Catanhat sechwt x3=+/Cssecfar. (23b)
Forthe casé;; = ¢ =+1or—1,foralli, j =1,..., N, equation (22) for equation (6),

N = 2, gives
CrL=¢A Cy = e(2A5 — Ay) o= A, — Ay Ay > A1 > 0(e = +1)
Ay > A1 <0(=-1 (24)
and forN = 3, equation (23) gives
C1=9:A,/4 Cp = 3¢(2A5 — Aq) C3 = 3e(8A, — TAy) /4 a’=A,— Ay
A3 =4A, —3A; Ay > A1 >0(=+D Ay > A1 2 8A5/7 <0 (e = -1).

(25)
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Next, we illustrate our results given by equations (14)—(21) with the exampl¥s-ef2
and 3 for the CQ equations, equation (12). Equations (13) are analytically solvablesfd?
with solutions given by equation (15)#4fare given by

bii=—3A1C7" b= 3(A1+40DC bu = —3(Ar - 4eD)CTH
bap = 3A,C57 (264a)
and the solution is given by

x1 = Ci(sec ot — 3) x3 = Cysecf at. (26b)

Equation (13) is analytically solvable fo¢ = 3 with solutions given by equation (15)ifare
given by

bu=FACTT  b=-FAi+4)C big= AL+ 1607

bo1 = 2(A; — 4Tt by = —2A,C; " baz = £(Ax+ 1249,

b= B(A3—160))C;" b= (A3 —1229)C,0  bp= 40,0 (279)
and the solution is given by

x1 = Ci(secar — 8secRar + &) xp = CpsecRar(secf ar — §)
x3 = Cysecfar. (27b)
Forthe casé;; = sforalli, j = 1,..., N, equation (26) gives for equation (13y,= 2,
C1=—3¢A1/2 Cy =3¢A,/2 a? = (Ay — A1) /4 (28)

and equation (27) gives for equation (18),= 3
C; =35A,/8 Cy, = —35:A,/6 C3 = 35¢A3/24 a? = (A — Ay)/4
Az =4A, — 3A; Ay > A1 > 0 (fore = +1) Ay > Ay <0 (fore = —1). (29)

5. Summary

Starting from the ansatz that analytic solutions fdmwaves of N CNLS equations can be
expressed in terms &¥ of the (2: + 1) Lame functions of orden,n = 1, ..., N, of variable
amplitudes and modulus, we have found many regions where the nonlinear coupling parameters
can assume wide ranges of values for which these solutions are valid and for whish the
coupled equations are thus analytically solvable. If we restrict ourselves to only aperiodic
waves, the analytically solvable regions are fewer and smaller. Applications to CQ equations
indicate that there may be other coupled nonlinear equations that can be studied in a similar
way. We also introduce the concept of classifying sets of solitary waves by their ‘order’. For
the important case of two CNL3V( = 2) equations, for example, the two coupled waves can

be chosen from three waves of order one (which reduce to two aperiodic waves, the familiar
dark and bright solitary waves) and five waves of order two (which reduce to three aperiodic
waves, referred to as red, white and blue solitary waves in [18]). A wave of dfd@mnnot,

in general, be a solution of CNLS equations involviNg— 2 or less coupled fields (or field
components). Thus, in particular, any wave of ordeX is not by itself a solitary wave of

an NLS equation, i.e. any wave of orde2 must be coupled or accompanied by at least
one of its partners of the same order to be solitary waves in coupled NLS equations. This
leads to an interesting and potentially useful idea that increasing the number of interacting
fields may sometimes facilitate the coupled solitary-wave propagation because of an increased
number of choices for the wave-type and amplitudes. The many advantages of using two waves
instead of one in a different context were known in other physical problems [19-21]. Besides
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applications in nonlinear optics, our results may find applications in the study of the dynamics
of Bose—Einstein condensates [22] which have attracted considerable interest recently. It is
also interesting to note a recent experimental observation of multihump solitons in a dispersive
nonlinear medium [23] and the appearance of two of the three waveforms of order two in the
theory of incoherent dark solitons [24].
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